PROPERTIES OF GENERALIZED FORCHHEIMER FLOWS IN POROUS MEDIA By

نویسندگان

  • LUAN T. HOANG
  • THINH T. KIEU
  • TUOC V. PHAN
  • Luan T. Hoang
  • Thinh T. Kieu
  • Tuoc V. Phan
چکیده

The nonlinear Forchheimer equations are used to describe the dynamics of fluid flows in porous media when Darcy's law is not applicable. In this article, we consider the generalized Forchheimer flows for slightly compressible fluids and study the initial boundary value problem for the resulting degenerate parabolic equation for pressure with the time-dependent flux boundary condition. We estimate L 1-norm for pressure and its time derivative, as well as other Lebesgue norms for its gradient and second spatial derivatives. The asymptotic estimates as time tends to infinity are emphasized. We then show that the solution (in interior L 1-norms) and its gradient (in interior L 2-norms) depend continuously on the initial and boundary data, and coefficients of the Forchheimer polynomials. These are proved for both finite time intervals and time infinity. The De Giorgi and Ladyzhenskaya-Uraltseva iteration techniques are combined with uniform Gronwall-type estimates, specific monotonicity properties, suitable parabolic Sobolev embeddings and a new fast geometric convergence result.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An experimental study on hydraulic behavior of free-surface radial flow in coarse-grained porous media

The equations of fluids in porous media are very useful in designing the rockfill and diversion dams, gabions, breakwaters and ground water reserves. Researches have been showed that the Forchheimer equation is not sufficient for the analysis of hydraulic behavior of free-surface radial flows; because, in these flows, in addition to the hydraulic gradient and velocity, the variable of radius is...

متن کامل

A FAMILY OF STEADY TWO-PHASE GENERALIZED FORCHHEIMER FLOWS AND THEIR LINEAR STABILITY ANALYSIS By

We model multi-dimensional two-phase flows of incompressible fluids in porous media using generalized Forchheimer equations and the capillary pressure. Firstly, we find a family of steady state solutions whose saturation and pressure are radially symmetric and velocities are rotation-invariant. Their properties are investigated based on relations between the capillary pressure, each phase’s rel...

متن کامل

Experimental Investigation of the Permeability and Inertial Effect on Fluid Flow through Homogeneous Porous Media

The value of the permeability in fluid flow through porous media is important for process investigation. In low Reynolds number, the classic Darcy’s law is suitable for simulation of fluid flow. In this paper, an experimental study for evaluation of preformed fiber permeability has been done. Also, the deviations from the classical Darcy law by experimental and numerical simulation of the N...

متن کامل

Structural Stability of Generalized Forchheimer Equations for Compressible Fluids in Porous Media

We study the generalized Forchheimer equations for slightly compressible fluids in porous media. The structural stability is established with respect to either the boundary data or the coefficients of the Forchheimer polynomials. An inhomogeneous Poincare-Sobolev inequality related to the non-linearity of the equation is used to study the asymptotic behavior of the solutions. Moreover, we prove...

متن کامل

Stability of Solutions to Generalized Forchheimer Equations of Any Degree

ABSTRACT. The non-linear Forchheimer equations are considered as laws of hydrodynamics in porous media in case of high Reynolds numbers, when the fluid flows deviate from the ubiquitous Darcy’s law. In this article, the dynamics of generalized Forchheimer equations for slightly compressible fluids are studied by means of the resulting initial boundary value problem for the pressure. We prove th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013